ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ И ИЗДЕЛИЯ ОГНЕУПОРНЫЕ

Метод определения окиси бора

Refractory materials and products.

Method for the determination of boron oxide

FOCT 2642.13—86

ОКСТУ 1509

Постановлением Государственного комитета СССР по стандартам от 27 мая 1986 г. № 1312 срок действия установлен

с 01.07.87 до 01.07.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на магнезиальные огнеупорные материалы и изделия и устанавливает фотометрический метод определения окиси бора при массовой доле от 0.01 до 0.4~%.

Метод основан на прямом измерении оптической плотности комплексного соединения бора с 1,1'-диантримидом, образующегося в среде концентрированной серной кислоты.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 2642.0—86.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Колориметр фотоэлектрический лабораторный.

Чашки платиновые по ГОСТ 5663—75.

Колбы конические кварцевые по ГОСТ 19908-80.

Печь муфельная с терморегулятором, обеспечивающая температуру нагрева до 1100°C.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:3.

Кислота серная по ГОСТ 4204—77 и разбавленная 1:1.

1,1'-диантримид, раствор 1 г/дм³ в концентрированной серной кислоте, свежеприготовленный.

Магний углекислый основной, водный.

Кислота борная по ГОСТ 9656—75.

- 2.1. Приготовление стандартных растворов окиси бора
- 2.1.1. Борную кислоту переводят в окись бора путем обезвоживания в платиновой чашке при $(400\pm20)^{\circ}$ С в муфельной печи. Спокойная поверхность расплава свидетельствует о полном удалении воды, после чего касаются дном чашки поверхности холодной воды, плав растрескивается, его переносят в бюксу и хранят в эксикаторе.

Стандартный раствор окиси бора: 0,5 г окиси бора растворяют в 70—80 см³ воды, раствор переводят в мерную колбу вместимостью 250 см³, доводят водой до метки и перемешивают. Раствор хранят в полиэтиленовом или кварцевом сосуде. Стандартный раствор с массовой концентрацией бора 0,002 г/см³ (раствор A).

Градуировочный стандартный раствор окиси бора: 10 см³ стандартного раствора А переносят в мерную колбу вместимостью 100 см³, доводят до метки водой, перемешивают. Градуировочный стандартный раствор с массовой концентрацией окиси бора

0,0002 г/см3 (раствор Б).

2.1.2. Стандартный раствор окиси бора для проведения оперативного контроля точности измерений: 0,25 г окиси бора растворяют в 70—80 см³ воды, раствор переводят в мерную колбу вместимостью 250 см³, доводят водой до метки, перемешивают. Раствор хранят в полиэтиленовой или кварцевой посуде. Стандартный раствор с массовой концентрацией окиси бора 0,001 г/см³ (раствор В).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску пробы массой 0,5 г (магнезит и брусит предварительно прокаливают при (1100±50)°С в течение 1 ч) помещают в коническую колбу из кварцевого стекла, приливают 10 см³ соляной кислоты, закрывают пробкой с воздушным холодильником и нагревают на электроплитке со слабым нагревом до разложения пробы. Обмывают воздушный холодильник. Раствор переводят в мерную колбу вместимостью 100 см³, охлаждают, доводят водой до метки, перемешивают и фильтруют через сухой складчатый фильтр средней плотности.

Если используемая серная кислота имеет плотность менее 1,825 г/см³, то к раствору пробы после разложения добавляют 25 см³ раствора серной кислоты (1:1), перемешивают, охлаждают и переводят в мерную колбу вместимостью 100 см³, доводят во-

дой до метки, перемешивают и фильтруют через фильтр «белая лента». Отбросив первые две порции фильтрата, отбирают аликвотную часть раствора 2 см³, переносят в мерную колбу вместимостью 25 см³ с притертыми пробками, приливают с помощью пипетки или бюретки 5 см³ раствора 1,1′-диантримида, доливают до метки серной кислотой плотностью 1,825 г/см³, перемешивают и нагревают на кипящей водяной бане в течение 1 ч. После охлаждения измеряют оптическую плотность растворов на фотоколориметре с красным светофильтром (область светопропускания 620—640 нм) в кювете с толщиной слоя 10 мм. В качестве раствора сравнения используют дистиллированную воду.

Массу окиси бора в граммах находят по градуировочному гра-

фику.

3.2. Построение градуировочного графика

В семь конических колб из кварцевого стекла помещают навески массой по 0,5 г основного углекислого магния, предварительного прокаленного в течение 2 ч в муфельной печи при температуре (1000±50)°С, приливают по 10 см³ соляной кислоты, закрывают пробкой с воздушным холодильником и нагревают до растворения навесок. Растворы охлаждают, переводят в мерные колбы вместимостью 100 см³, доводят водой до метки, перемешивают и фильтруют через сухой складчатый фильтр средней плотности.

Если используемая серная кислота имеет плотность менее 1,825 г/см³, то к растворам проб после разложения добавляют по 25 см³ раствора серной кислоты (1:1), охлаждают и переводят в мерные колбы вместимостью по 100 см³. Добавляют в колбы соответственно 0,5; 1,0; 2,0; 4,0; 8,0 и 12,0 см³ градуировочного стандартного раствора окиси бора (Б), что соответствует 0,0001; 0,0002; 0,0004; 0,0008; 0,0016 и 0,0024 г окиси бора. В седьмую колбу не добавляют раствор окиси бора. Колбы доливают водой до метки, перемешивают. Аликвотную часть каждого раствора 2 см³ переносят в мерные колбы вместимостью 25 см³ с притертыми пробъами, приливают с помощью пипетки или бюретки по 5 см³ раствора 1,1'-диантримида, доливают до метки серной кислотой плотностью 1,825 г/см³, перемешивают и нагревают на кипящей водяной бане в течение 1 ч.

После охлаждения измеряют оптическую плотность растворов с красным светофильтром (область светопропускания 620—640 нм) в кювете с толщиной слоя 10 мм. В качестве раствора сравнения используют дистиллированную воду.

По измеренным значениям оптической плотности и соответствующим им массам окиси бора в $r/100~{\rm cm}^3$ строят градуировочный график.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю окиси бора (X) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1} ,$$

где m — масса окиси бора, найденная по градуировочному графику, г;

 m_1 — масса навески, г.

4.2. Абсолютные расхождения результатов параллельных определений не должны превышать допускаемых значений, приведенных в таблице.

Массова я доля окиси б ора, %	Абсолютное допускаемое расхождение, %		
От 0,01 до 0,02 включ.	0,008		
Св. 0,02 » 0,04 »	0,01		
» 0,04 » 0,10 »	0,02		
» 0,10 » 0,20 »	0,04		
» 0,20 » 0,40 »	0,07		

Изменение № 1 ГОСТ 2642.13—86 Материалы и изделия огнеупорные. Метод определения окиси бора

Утверждено и введено в действие Постановлением Комитета стандартвзации в метрологии СССР от 07.02.92 № 120

Дата введения <u>01.07.92</u>

Наименование стандарта изложить в новой редакции: «Огнеупоры и огнеупорное сырье. Метод определения окиси бора

Refractories and refractory raw materials. Method for the determination

of boron oxide».

Вводная часть. Заменить слова: «магнезиальные огнеупорные» на «магнези

альное огнеупорное сырье».

Раздел 2. Заменить ссылку и слова: ГОСТ 5663—75 на ГОСТ 5663—79 «раствор 1 г/дм³» на «раствор с массовой долей 0,1 %».

(Продолжение см. с. 142)

(Продолжение изменения к ГОСТ 2642.13—86)

Пункт 4.2 изложить в новой редакции: «42. Нормы точности и нормативы контроля точности определений массовой доли окиси бора приведены в таблице.

	Нормы точности и норматьвы контроля точности,			
Мас сов ая доля окиси бора, •	A	d_{K}	d 2	è
От 0,01 до 0,02 включ Св 0,02 » 0,05 »	0,038 0,010	0,010 0,012	0,00 8 0,010	0,005 0,006
» 0,05 » 0,1 » » 0,1 » 0,2 »	0,019 0, 04	0,024 0,05	0,02 0 0,04	0,012 0,02
⇒ 0,2 ⇒ 0,4 ⇒	0,07	0,08	0,07	0,04

(ИУС № 5 1992 г.)