ОГНЕУПОРЫ И ОГНЕУПОРНОЕ СЫРЬЕ

Методы определения оксида марганца (II)

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственным Техническим комитетом по стандартизации МТК 9; Украинским Государственным научно-исследовательским институтом огнеупоров (УкрНИИО)

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11 от 23 апреля 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Беларуси
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 15 декабря 1999 г. № 513-ст межгосударственный стандарт ГОСТ 2642.12—97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.
 - 4 B3AMEH ΓΟCT 2642.12-86

© ИПК Издательство стандартов, 2000

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ОГНЕУПОРЫ И ОГНЕУПОРНОЕ СЫРЬЕ

Методы определения оксида марганца (II)

Refractories and refractory raw materials. Methods for determination of manganese (II) oxide

Дата введения 2000-07-01

1 Область применения

Настоящий стандарт распространяется на огнеупорное сырье, материалы и изделия всех типов и устанавливает методы определения оксида марганца (II):

- фотометрический при массовой доле оксида марганца (II) от 0,05 до 1,0 % для высокомагнезиальных и магнезиально-известковых огнеупоров:
- фотометрический при массовой доле оксида марганца (II) от 0,03 до 1,0 % для алюмосиликатных и высокомагнезиальных огнеупоров;
- атомно-абсорбционный при массовой доле оксида марганца (II) от 0,1 до 10 % для всех типов огнеупоров.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 83—79 Натрий углекислый. Технические условия

ГОСТ 1277—75 Серебро азотнокислое. Технические условия

ГОСТ 2642.0—86 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа

ГОСТ 2642.3—97 Огнеупоры и огнеупорное сырье. Методы определения оксида кремния (IV)

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 4197—74 Натрий азотистокислый. Технические условия

ГОСТ 4199—76 Натрий тетраборно-кислый 10-водный. Технические условия

ГОСТ 4204—77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 4521—78 Ртуть (I) азотнокислая 2-волная. Технические условия

ГОСТ 6008—90 Марганец металлический и марганец азотированный. Технические условия

ГОСТ 6552-80 Кислота ортофосфорная. Технические условия

ГОСТ 6563—75 Изделия технические из благородных металлов и сплавов. Технические усло-

вия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 20478—75 Аммоний надсерно-кислый. Технические условия

ГОСТ 20490—75 Калий марганцовокислый. Технические условия.

3 Общие требования

Общие требования к методам анализа и безопасности труда — по ГОСТ 2642.0.

4 Фотометрический метод определения оксида марганца (II) (при массовой доле от 0.05 до 1.0 %)

4.1 Сущность метода

Метод основан на окислении марганца в азотнокислом или сернокислом растворе периодатом калия в присутствии фосфорной кислоты. Оптическую плотность окраски перманганат-ионов измеряют на фотоэлектроколориметре или спектрофотометре при длине волны 530 нм или с помощью желто-зеленого светофильтра.

4.2 Аппаратура, реактивы и растворы

Спектрофотометр или колориметр электрический лабораторный.

Чашка платиновая № 118-3 по ГОСТ 6563.

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461. разбавленная 1:1.

Кислота серная по ГОСТ 4204.

Кислота ортофосфорная по ГОСТ 6552.

Калий йоднокислый (периодат калия), твердый. Марганец металлический по ГОСТ 6008, 99,95 %.

Стандартный раствор оксида марганца (II): 0,7752 г марганца помещают в стакан вместимостью 250 см³, накрывают часовым стеклом и растворяют в 30 см³ раствора азотной кислоты (1:1) при нагревании. Затем раствор охлаждают, переводят в мерную колбу вместимостью 1000 см³, доводят водой до метки, перемешивают.

Стандартный раствор имеет массовую концентрацию оксида марганца (II) 0,001 г/см³ (раствор A).

Градуировочный стандартный раствор оксида марганца (II): отбирают пипеткой 50 см³ стандартного раствора оксида марганца (II) (раствор A) в мерную колбу вместимостью 500 см³, доводят водой до метки и перемешивают.

Градуировочный стандартный раствор имеет массовую концентрацию оксида марганца (II)

0,0001 г/см³(раствор Б).

Для приготовления стандартного раствора оксида марганца (II) допускается использовать калий марганцовокислый по ГОСТ 20490.

4.3 Проведение анализа

4.3.1 Навеску пробы массой 0,5 г помещают в платиновую чашку, смачивают несколькими каплями воды, прибавляют 5—6 капель азотной или серной кислоты, 5—10 см³ раствора фтористоводородной кислоты, осторожно нагревают до выделения бурых паров оксидов азота (или белых паров серной кислоты). Остаток обрабатывают 50—60 см³ воды, подкисляют 10 см³ азотной кислоты и нагревают до растворения на песчаной бане. Раствор охлаждают, переводят в мерную колбу вместимостью 100 см³, доводят водой до метки и перемешивают.

В стакан вместимостью 250 см³ отбирают аликвотную часть 20—50 см³ исходного раствора, в котором должно быть не более 0,001 г оксида марганца (II). Прибавляют 10 см³ азотной кислоты и 10 см³ фосфорной кислоты, добавляют 0,3—0,4 г периодата калия, нагревают 5—10 мин при температуре 90 °С до возникновения устойчивой окраски. После охлаждения окрашенный раствор переводят в мерную колбу вместимостью 100 см³, доводят до метки водой и перемешивают.

Измеряют оптическую плотность при длине волны 530 нм или при применении желто-зеленого светофильтра. Раствором сравнения служит раствор контрольного опыта, содержащий все

применяемые реактивы.

Массу оксида марганца (II) в граммах находят по градуировочному графику, который строят

в тех же условиях.

4.3.2 Для построения градуировочного графика в семь из восьми колб вместимостью по 100 см³ отмеряют 1,0; 2,0; 3,0; 4,0; 6,0; 8,0; 10,0 см³ градуировочного раствора оксида марганца (II) (раствор Б), прибавляют в каждую колбу 10 см³ азотной кислоты и 10 см³ фосфорной кислоты. Растворы нагревают до кипения и затем окисляют периодатом калия при нагревании. Далее поступают, как указано в 4.3.1. По измеренным величинам оптических плотностей и соответствующим им массам оксида марганца (II) в граммах строят градуировочный график.

4.4 Обработка результатов

4.4.1 Массовую долю оксида марганца (II) X, %, вычисляют по формуле

$$X = \frac{m V}{m_1 V_1} \cdot 100, \tag{1}$$

где m — масса оксида марганца (II), найденная по градуировочному графику, г;

V — объем исходного раствора, см³;

 m_1 — масса навески, г;

 V_1 — объем аликвотной части исходного раствора, см³.

4.4.2 Нормы точности и нормативы контроля точности определений оксида марганца (II) приведены в таблице 1.

Таблица 1

В процентах

Массовая доля оксида марганца (II)	Нормы точности и нормативы контроля точности				
	Δ	d_{K}	d ₂	δ	
От 0,01 до 0,02 включ.	0,008	0,010	0,009	0,005	
Св. 0,02 » 0,05 »	0,013	0.016	0,013	0,008	
» 0,05 » 0,1 »	0,018	0,023	0,019	0,011	
» 0,1 » 0,2 »	0,03	0,04	0,03	0,02	
» 0,2 » 0,5 »	0,04	0,05	0,04	0,03	
» 0,5 » 1 »	0,06	0.07	0,06	0,04	
» 1 » 2 »	0,08	0,10	0,09	0,05	
» 2 » 5 »	0,13	0,16	0,13	0,08	
» 5 » 10 »	0,18	0,23	0,19	0,12	

5 Атомно-абсорбционный метод определения оксида марганца (II) (при массовой доле от 0,1 до 10 %)

5.1 Сущность метода

Атомно-абсорбционный метод основан на измерении атомной абсорбции марганца в пламени воздух — ацетилен при длине волны 279,5 нм.

5.2 Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр с источником излучения для марганца.

Тигли платиновые по ГОСТ 6563.

Печь муфельная, обеспечивающая нагрев до температуры (1000 ± 50) °С.

Натрий углекислый по ГОСТ 83.

Натрий тетраборнокислый 10-водный по ГОСТ 4199, обезвоженный при температуре 400 °C. Смесь для сплавления, состоящая из углекислого натрия и безводного натрия тетраборнокислого в соотношении 2: 1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1 и 1:3.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Фоновый раствор: 16-20 г смеси для сплавления растворяют в 240 см³ соляной кислоты (1:3), разбавляют до 1 дм³ и перемешивают.

Марганец металлический по ГОСТ 6008.

Стандартный раствор оксида марганца (II): 0,7745 г марганца помещают в стакан, приливают 10 см³ азотной кислоты (1:1), добавляют 10 см³ соляной кислоты (1:1) и упаривают досуха. Соли растворяют в 20 см³ соляной кислоты (1:1), переводят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемещивают.

1 см³ раствора содержит 0,001 г оксида марганца (II) (раствор A).

Градуировочный раствор оксида марганца (II): 10 см³ стандартного раствора А пипеткой переносят в мерную колбу вместимостью 200 см³, доводят до метки водой и перемешивают.

 1 см^3 раствора содержит 0,00005 г оксида марганца (II) (раствор Б).

Для приготовления стандартного раствора оксида марганца (II) допускается использовать соли марганца квалификации не ниже х. ч.

5.3 Проведение анализа

Навеску пробы массой 0.2 г сплавляют в платиновом тигле со смесью для сплавления при температуре 950-1000 °C. Сплав выщелачивают в 60 см³ соляной кислоты (1:3) и переводят раствор в мерную колбу вместимостью 250 см³. Раствор доводят до метки водой и перемешивают.

В мерную колбу вместимостью 100 см³ отбирают аликвотную часть раствора 10—50 см³ (аликвотная часть раствора должна содержать от 0,00005 до 0,001 г оксида марганца (II)), доводят до метки фоновым раствором, перемешивают и измеряют атомное поглощение растворов в пламени ацетилен — воздух при длине волны 279,5 нм.

Массу оксида марганца (II) в граммах находят по градуировочному графику.

5.4 Построение градуировочного графика

В мерные колбы вместимостью $1\bar{0}0$ см³ отбирают аликвотные части градуировочного раствора Б: 1,0; 3,0; 5,0; 7,0; 10,0; 12,0; 15,0; 17,0; 20,0 см³, что соответствует 0,00005; 0,00015; 0,00020; 0,00035; 0,0005; 0,0006; 0,00075; 0,00085; 0,00100 г оксида марганца (II), доливают до метки фоновым раствором, перемешивают и измеряют атомное поглощение растворов в пламени ацетилен — воздух при длине волны 279,5 нм.

5.5 Обработка результатов

5.5.1 Массовую долю оксида марганца (II), X_1 , %, вычисляют по формуле

$$X_1 = \frac{m\ V}{m,\ V_1} \cdot 100,\tag{2}$$

где m — масса оксида марганца (II), найденная по градуировочному графику, г;

V — объем исходного раствора, см³;

 m_1 — масса навески, г;

 V_1 — объем аликвотной части раствора, см³.

5.5.2 Нормы точности и нормативы контроля точности определений массовой доли оксида марганца (II) приведены в таблице 1.

6 Фотометрический метод определения оксида марганца (II) (при массовой доле от 0,03 до 1,0 %)

6.1 Сущность метода

Метод основан на окислении марганца в перманганат надсернокислым аммонием в присутствии ионов серебра. Оптическую плотность окраски перманганат-ионов измеряют на фотоэлект-роколориметре или спектрофотометре при длине волны 525 нм или 545 нм.

6.2 Аппаратура, реактивы и растворы

Спектрофотометр или колориметр электрический лабораторный.

Ртуть азотнокислая 2-водная по ГОСТ 4521.

Серебро азотнокислое по ГОСТ 1277.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота ортофосфорная по ГОСТ 6552.

Аммоний надсернокислый по ГОСТ 20478, раствор с массовой долей 10 %.

Натрий азотистокислый по ГОСТ 4197, раствор с массовой долей 5 %.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Калий марганцовокислый по ГОСТ 20490.

Основной раствор: 10 г азотнокислой ртути и 2,5 г азотнокислого серебра помещают в стакан вместимостью 1000 см³, добавляют 50 см³ азотной кислоты и 200 см³ ортофосфорной кислоты и растворяют в 500 см³ воды. Раствор переводят в мерную колбу вместимостью 1000 см³, доводят водой до метки и перемешивают.

Стандартный раствор оксида марганца (II): 2,228 г марганцовокислого калия помещают в стакан вместимостью 600 см³, добавляют 200 см³ воды и растворяют в 25 см³ раствора азотной кислоты (1:1) при нагревании. Затем раствор охлаждают, переводят в мерную колбу вместимостью 1000 см³, доводят водой до метки и перемешивают.

Стандартный раствор имеет массовую концентрацию оксида марганца (II) 0,001 г/см³ (раствор A). Градуировочный стандартный раствор оксида марганца (II): отбирают пипеткой 25 см³ стандартного раствора оксида марганца (II) в мерную колбу вместимостью 500 см³, разбавляют 10 см³ азотной кислоты (1:1), доводят водой до метки и перемешивают.

Градуировочный стандартный раствор имеет массовую концентрацию оксида марганца (II) 0,00005 г/см³ (раствор Б). Раствор применяют в день приготовления.

6.3 Проведение анализа

6.3.1 Аликвотную часть раствора, полученного по ГОСТ 2642.3, раздел 9, равную 25 см³, помещают в химический стакан вместимостью 400 см³, прибавляют 5 см³ серной кислоты (1:1) и осторожно нагревают на плите до выделения белых паров серной кислоты. Охлаждают и остаток обрабатывают 50 см³ воды. Приливают 10 см³ основного раствора, 10 см³ надсернокислого аммония, нагревают до кипения и кипятят 5 мин. Снимают стакан с нагревательной плиты и выдерживают еще 2 мин без доступа тепла до образования устойчивой окраски. Затем раствор охлаждают,

переводят в мерную колбу вместимостью 100 см³, доводят водой до метки и перемешивают (исходный раствор).

В стакан вместимостью 100 см³ отбирают часть исходного раствора для приготовления фонового раствора. Для этого при постоянном перемешивании по каплям добавляют нитрит натрия до полного исчезновения окраски перманганата и еще 2 капли в избыток.

Измеряют оптическую плотность анализируемого раствора при длине волны 525 нм или 545 нм в кювете толщиной слоя 40—50 мм по отношению к фоновому раствору.

Параллельно ведут контрольный опыт, содержащий все применяемые реактивы.

Массу оксида марганца в граммах находят по градуировочному графику, который строят в тех же условиях.

6.3.2 Для построения градуировочного графика в химические стаканы вместимостью 400 см³ отбирают аликвотные части градуировочного стандартного раствора оксида марганца (II): 2.0; 5.0; 10,0; 15,0; 20 см^3 , прибавляют 5 см 3 серной кислоты (1 : 1) и далее действуют по 6.3.1.

По найденным значениям оптической плотности и соответствующим им массам оксида марганца (II) мг строят градуировочный график и рассчитывают константу метода:

$$K = \frac{a}{D}, \tag{3}$$

где a — масса оксида марганца (II), содержащаяся в мерной колбе на 100 см 3 , мг;

D — оптическая плотность раствора.

При описанных условиях измерения константа метода составляет примерно 0,75.

6.4 Обработка результатов

6.4.1 Массовую долю оксида марганца (II) X_2 , %, вычисляют по формуле

$$X_2 = \frac{(D - D_1) K V}{m_1 V_1 1000} \cdot 100, \tag{4}$$

где D — оптическая плотность раствора;

 D_1 — оптическая плотность раствора, полученного при проведении контрольного опыта; K — константа метода, рассчитанная по 6.3.2;

V — объем исходного раствора, см³;

 m_1 — масса навески, г; V_1 — объем аликвотной части исходного раствора, см³.

6.4.2 Нормы точности и нормативы контроля точности определений массовой доли оксида марганца (II) приведены в таблице 1.

УДК 666.76: 543.06: 006.354

MKC 81.080

И29

OKCTY 1509

Ключевые слова: огнеупоры, огнеупорное сырье, оксид марганца, фотометрический метод, атомно-абсорбционный метод

> Редактор *Р С Федорова*Технический редактор *В Н Прусакова*Корректор *В И Варенцова* Компьютерная верстка В И Грищенко

Изд лиц № 021007 от 10 08 95

Уч -изд л 0,70

Сдано в набор 30 05 2000 0,70 Тираж 393 экз

Подписано в печать 08 06 2000 С 5264 Зак 545

Усл печ л 0,93