	C	T	A	Н	Д	<u>A</u>	P	T		C	3	В	СТ	СЭВ	5497—86
СОВЕТ ЭКОНОМИЧЕСКОЙ ВЗАИМОПОМОЩИ	H:	np oct	ед: и кон	М еле дор	ЕЖ нис рож укт ина	ДУ (ны:	HAI lecy k i lux leci	, ОЧ (ОН (О) (О)	стру 10ен 0 н	у Спо М Н	ус ий ус	и -вт	_	Групп	ь Ж81

Настоящий стандарт СЭВ распространяется на нежесткие дорожные конструкции и их конструктивные слои и устанавливает метод испытания несущей способности установкой динамического нагружения (УДН).

Настоящий стандарт СЭВ не распространяется на дорожные

конструкции с покрытием из цементобетона.

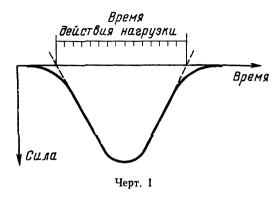
1. СУЩНОСТЬ МЕТОДА

Метод заключается в определении величин модуля упругости и радиуса кривизны упругой линии на поверхности испытываемого слоя по амплитудам деформации, полученным от действия ударной силы через круглый, жесткий штамп.

Величина и время действия ударной силы соответствуют про-

ходу колеса с нагрузкой 50 kN и скоростью 60 km/h.

2. ОБЩИЕ ПОЛОЖЕНИЯ


2.1. Метод применяется для определения несущей способности дорожных конструкций в случаях:

I — на поверхности существующего покрытия проезжей части или на верхнем несущем слое;

II— на нижнем несущем слое, грунтовом основании и подстилающем грунте.

2.2. Время действия ударной силы (нагрузки) определяется на основе общей зависимости согласно черт. 1.

> Утвержден Постоянной Комиссией по сотрудничеству в области стандартизации Светозарево, июнь 1986 г.

3. ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ

3.1. Основные параметры установки динамического нагружения (УДН), состоящей из нагружаемого штампа, направляющей рамы с креплением и падающего груза, должны соответствовать приведенным в табл. 1.

Таблица Г

Случай	Время действия падающего груза, в	Размеры нагружаемого штампастальной плиты с отверствем диаметром 70 mm в центре				
		диаметр, тт	mm ,внишкот			
II	От 0,022 до 0,025 » 0,090 » 0,110	340 500	35 25			

- 3.2. Измерительное техническое оборудование состоит из:
- 1) регистрирующих устройств электрических приборов для измерения и регистрации ударной силы F и амплитуд деформацин w_0 , w_1 ;
- 2) приспособления для закреплений электрических регистрирующих устройств.

Примечание. В случае II амплитуду деформации w_0 можно измерять и регистрировать механическим прибором (индикатором).

3.3. Перед использованием установки динамического нагружения следует проводить калибровку на испытательном стенде не менее чем один раз в год.

4. КАЛИБРОВКА УДН

4.1. Калибровка УДН с достаточной для практических целей точностью производится на испытательном стенде.

4.2. Испытательный стенд представляет собой фундаментный блок из бетона массой $>2000~{\rm kg}$ с примерными размерами $1100\times1000\times1000~{\rm mm}$.

Поверхность блока соединена с примыкающей площадью в одном уровне. В середине поверхности оставляют отверстие, величину которого определяют размером помещаемой в него мессдозы (предельно допускаемая нагрузка ≥100 kN).

4.3. Возникающая ударная сила одновременно с регистрацией мессдозы на испытательном стенде фиксируется мессдозой на самой УДН. Если показания мессдоз расходятся более чем на 5%,

калибровку необходимо повторить.

- 4.4. При проведении калибровки УДН помещают на мессдозу испытательного стенда. Прибор должен стоять перпендикулярно поверхности. Калибровка состоит в том, чтобы путем изменения высоты падения, массы падающего груза и (или) жесткости амортизирующих элементов определить диапазон нагрузки, необходимой для получения заданного контактного напряжения и времени действия нагрузки.
- 4.5. Допускается использовать для калибровки УДН стенды, в которых учитывается жесткость испытываемой системы.

5. ПОДГОТОВКА К ИСПЫТАНИЯМ

5.1. Определяют срок проведения испытаний, исходя из цели испытания и в зависимости от погодных условий, влажности земляного полотна и прочности дорожной конструкции и ее слоев.

ного полотна и прочности дорожной конструкции и ее слоев. Испытания дорожных конструкций со слоями из материалов, содержащих битум, целесообразно проводить при температуре от 5 до 15 °C.

5.2. Определяют контактное напряжение в соответствии с табл. 2.

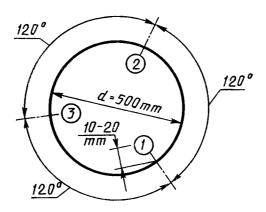
Таблица 2

Случай	Поверхность испытания	Диаметр плиты d, mm	Контактное напряжение*) σ, N/mm ³
I	Поверхностный слой	340	0,60
	Верхний несущий слой	340	0,45
II	Нижний несущий слой	500	0,20
	Грунтовое основание	500	0,10
	Подстилающий грунт	500	0,10

^{*} Заданное контактное напряжение должно соблюдаться с отклонением не более $\pm 10\%$.

5.3. Очищают поверхность слоя на месте испытания и обеспечивают возможно более полное прилегание штампа. При проведении массовых испытаний особых мер для обеспечения плотного прилегания штампа к поверхности испытываемого слоя не принимают.

Точность обеспечивается за счет большого числа испытаний. При разовых испытаниях плотность прилегания обеспечивается притиркой штампа к поверхности испытываемого слоя с заполнением пустот под штампом гипсовым тестом или одноразмерным мелким песком.


5.4. Размещают и производят монтаж УДН на месте испытания согласно инструкции изготовителя прибора, а также размещают и тарируют электрические измерительные и регистрирующие устройства.

6. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

- 6.1. Испытания в случае I проводят со штампом диаметром 340 mm в следующем порядке:
- 1) устанавливают высоту падения для получения контактного напряжения по табл. 2;
- 2) дважды нагружают и определяют w_0 , w_1 и ударную силу F. Если результаты двух измерений отличаются друг от друга более чем на 20% (относительно меньшего значения), то проводят дальнейшее нагружение;
- 3) выборочно контролируют соблюдение времени действия нагрузки, например в начале и конце каждой серии измерений при приближенно одинаковых условиях и (или) при отдельных очень высоких значениях прогиба. Если требования п. 3.1 не соблюдены, то на основе калибровочных значений необходимо изменить высоту падения, массу падающего груза и (или) жесткость амортизирующих элементов.
- 6.2. Испытания в случае II проводят со штампом диаметром 500 mm в следующем порядке:
- 1) устанавливают высоту падения для получения контактного напряжения по табл. 2;
 - 2) нагружают и определяют w_0 и F: предварительное нагружение однократное без измерения; испытательное нагружение трехкратное.

Примечания:

- 1. При пользовании электрическим прибором для измерения деформации и рєгистрации ударной силы действителен порядок, приведенный в п. 6.1, однако без учета w_1 .
- 2. При пользовании механическим прибором деформация (w_0) измеряется при нагружении по схеме, приведенной на черт. 2.

1 — точка измерения при первом нагружении; 2 — точка измерения при втором нагружении; 3 — точка измерения при третьем нагружении.

Черт. 2

3) выборочно контролируют соблюдение времени действия нагрузки, например, в начале и в конце каждой серии измерений при приближенно одинаковых условиях и (или) при отдельных очень высоких значениях прогиба.

Примечание. Если требования по п. 3.1 не соблюдены, то на основе калибровочных значений необходимо изменить высоту падения, массу падающего груза и (или) жесткость амортизирующих элементов.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 7.1. Для полученных в результате испытаний отдельных значений в данной (i-й) точке измерения определяют:
- 1) среднее значение ударной силы, действующей на нагружаемый штамп (F_i) , в ньютонах, округленное до 1 N;
- 2) среднее значение амплитуды упругой деформации нагруженной поверхности по оси нагрузки (W_{0_t}) и амплитуды упругой деформации на расстоянии a от оси нагрузки (W_{1_t}) , выраженной в миллиметрах, округленное до 0,01 mm;
- 3) значение контактного напряжения (σ_i) в ньютонах на квадратный миллиметр, округленное до 0,01 N/mm², по формуле

$$\sigma_i = \frac{4F_i}{\pi \cdot d^2} \,, \tag{1}$$

где F — ударная сила, N;

- d диаметр нагружаемого штампа, mm;
- 4) значение модуля упругости (E_{vd_i}), в ньютонах на квад-

миллиметр округленное до 1 N/mm², вычисляют ратный формуле

$$E_{vd_i} = \frac{\pi \cdot d \cdot \sigma_i}{4W_{\bullet_i}} (1 - \mu^2), \qquad (2)$$

где $W_{0,}$ — амплитуда упругой деформации нагруженной поверхности по оси нагрузки, тт;

и — коэффициент Пуассона, принимаемый для равным 0,35, для дорожных конструкций — 0,3;

5) значение радиуса кривизны упругой линии на поверхности связанного слоя (R_d) , выраженное в миллиметрах, округленное до 103 mm, по формуле

$$R_{di} = \frac{a^2 \cdot W_{1_l}}{2W_{0_l} \cdot (W_{0_l} - W_{1_l})} \tag{3}$$

или при a = 225 mm

$$R_{di} = \frac{25,312 \cdot W_{1i}}{W_{0i} (W_{0i} - W_{1i})} , \qquad (4)$$

где а — расстояние между осью нагрузки и точкой измерения амплитуды деформации W1, тт;

 $W_{\mathbf{1}}$ — амплитуда упругой деформации на расстоянии aоси нагрузки, тт.

7.2. Нормативные значения определяют для участков дорог с амплитудой деформации, измеренной по оси нагрузки одинакового порядка, на основе общих зависимостей согласно СТ СЭВ 3404—81 с доверительной вероятностью 95 %:

1) значение амплитуды упругой деформации нагруженной поверхности по оси нагрузки ($W_0/95$), выраженной в миллиметрах, округленное до 0,01 mm, по формуле

$$\overline{W}_0/95 = W_0 + t \cdot S_{W_0} , \qquad (5)$$

где \overline{W}_0 — среднее арифметическое значений W_{0_l} , определенных в п точках измерения, тт (порядковый помер места измерения $i=1, 2, 3, \ldots, n-1, n$;

t — значение коэффициента Стьюдента для доверительной

вероятности 95%; S_{W_0} — стандартное отклонение величины W_{0_1} от среднего значения $\overline{W_0}$;

2) значение модуля упругости ($E_{vd}/95$), выраженного в ньютонах на квадратный метр, округленное до 1 N/mm2, по формуле

$$E_{vd}/95 = \overline{E}_{vd} - t \cdot S_{E_{vd}} , \qquad (6)$$

- где \overline{E}_{vd} среднее арифметическое значений $E_{\imath d_i}$ определенных в *п* точках измерения, N/mm² (порядковый номер места измерения, $i=1, 2, 3, \ldots, n-1, n$);
 - $S_{E_{\tau d}}$ стандартное отклонение величины $E_{\tau d_l}$ от среднего значения E_{vd} , N/mm²;
- значение радиуса кривизны (R_d /95), выраженного в миллиметрах, округленное до 103 mm, по формуле

$$R_d = \overline{R}_d - t \cdot S_{R_d}, \tag{7}$$

- где \overline{R}_d среднее арифметическое значений R_{d_i} , определенных в n точках измерения, 10^3 mm; (порядковый номер места измерения $i=1, 2, 3, \ldots, n-1, n$);
 - S_{R_d} стандартное отклонение величины R_{d_i} от среднего значения \overline{R}_d , 10^3 mm.

ПРИЛОЖЕНИЕ

ОБОЗНАЧЕНИЯ, ПРИНЯТЫЕ В СТАНДАРТЕ

- W_0 амплитуда упругой деформации нагруженной поверхности по оси нагрузки, тт;
- W_1 амплитуда упругой деформации на расстоянии a от оси нагруз-
- E_{vd} модуль упругости, определенный по амплитуде деформации w_0 ,
- R_d радиус кривизны упругой линии на поверхности связанного слоя, определенный по амплитудам деформации w_0 и w_1 , 10^3 mm; F — ударная сила, действующая на нагружаемый штамп УДН, N;

 - о контактное напряжение, возникающее на поверхности испытываемой конструкции от действия ударной силы F по пагружаемым штампам, N/mm²;
 - d диаметр нагружаемого штампа, mm;
 - а расстояние между осью нагрузки и точкой измерения амплитуды деформации w_1 ; a = const = 225 mm:
 - і обозначение порядкового номера измерения;
- \overline{W}_{0} среднее арифметическое значение величины W_{0} ;
- $\overline{\sigma}$ среднее арифметическое значение величины σ_t ;
- \overline{E}_{vd} среднее арифметическое значение величины E_{vd} ;
- S_{W_0} стандартное отклонение величины W_{0} , от среднего значения \overline{W}_{0} ;
- $S_{E_{vd}}$ стандартное отклонение величины E_{vd} от среднего значения \overline{E}_{vd} ; S_{R_d} стандартное отклонение величины R_{d_i} от среднего значения

- т значение коэффициента Стьюдента для заданного уровня статистической надежности;
- $W_0/95$ нормативная для участка дороги амплитуда деформации w_0 со статистической належностью 95 %:
- $E_{vd}/95$ нормативный для участка дороги модуль упругости со статистической належностью 95%:
- $R_d/95$ нормативный для участка дороги радиус кривизны со статистической надежностью 95%.

Конен

ИНФОРМАЦИОННОЕ ПРИЛОЖЕНИЕ

ПЕРЕЧЕНЬ КЛЮЧЕВЫХ СЛОВ/ДЕСКРИПТОРОВ*

Ключевые слова/дескрипторы: дороги автомобильные, методы испытаний, конструкции дорожные, способности насущие, установка динамического нагружения (УДН), модуль упругости.

^{*} Дескрипторы тезауруса СЭВ по стандартизации выделены полужирным шрифтом.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. Автор — делегация ГДР в Постоянной Комиссии по сотрудничеству в области транспорта.
2. Тема — 23.800.09—83.
3. Стандарт СЭВ утвержден на 60-м заседании ПКС.
4. Сроки начала применения стандарта СЭВ:

	Сроки начала применения стандарта СЭВ						
Страны— члены СЭВ	в Договорно-правовых отно- шениях по экономическому и научно-техническому сотрудничеству	в народном хозяйстве					
НРБ	Июль 1988 г.	Июль 1988 г.					
ВНР							
СРВ							
ГДР	Январь 1987 г.	Июль 1987 г.					
Республика Куба							
МНР							
ПНР		-					
СРР	-	_					
СССР	Июль 1987 г.	Июль 1987 г.					
ЧССР	Январь 1989 г.	Январь 1989 г.					

^{5.} Срок проверки — 1991 r.

Сдано в наб. 30.09.86 Подп. к печ. 19.11.86 0,625 усл. п. л. 0,625 усл. кр.-отт: 0,53 уч.-изд. л, Тираж 860 Цена 3 коп.